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Thyroid stimulating hormone (TSH), a glycoprotein hormone composed of α and β chains,
is produced by thyrotrope cells of the anterior pituitary. Within the conventional endocrine
loop, pituitary-derived TSH binds to receptors in the thyroid, resulting in the release of
the thyroid hormones thyroxine (T4) and triiodothyronine (T3). T4 and T3 in turn regulate
nearly every aspect of mammalian physiology, including basal metabolism, growth and
development, and mood and cognition. Although TSHβ has been known for years to be
produced by cells of the immune system, the significance of that has remained largely
unclear. Recently, a splice variant of TSHβ (TSHβv), which consists of a truncated but bio-
logically functional portion of the native form ofTSHβ, was shown to be produced by bone
marrow cells and peripheral blood leukocytes, particularly cells of the myeloid/monocyte
lineage. In contrast, full-length native TSHβ is minimally produced by cells of the immune
system. The present article will describe the discovery of the TSHβv and will discuss its
potential role in immunity and autoimmunity, inflammation, and bone remodeling.
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TSH AND THE IMMUNE SYSTEM
The hypothalamus–pituitary–thyroid (HPT) axis is an integrated
hormone network that is essential for maintaining mammalian
physiology, basal metabolism, growth, development, mood, and
cognition. Thyroid stimulating hormone (TSH) belongs to a
set of glycoprotein hormones that includes lutropin, follitropin,
and chorionic gonadotropin. All four hormones consist of an
α-subunit and a non-covalently bound β-subunit (1). Hormone
specificities are dictated by the β-subunit. Thyrotropin-releasing
hormone (TRH) is produced in the hypothalamus and transported
to the anterior pituitary via the superior hypophyseal artery, where
it induces the release of TSH. TSH travels via the circulation to
the thyroid, binds to the TSH receptor (TSHR) on thyroid fol-
licular cells, and induces the secretion of the thyroid hormones,
thyroxine (T4) and triiodothyronine (T3). Although T4 is the
predominant thyroid hormone present in the circulation, it is
principally a pro-hormone of more biologically active T3, which is
generated following conversion of T4 to T3 in the tissues by deiod-
inases. Extensive feedback mechanisms, in particular the levels of
circulating TSH, T4 and T3, control TRH and TSH output.

The mouse TSHβ gene consists of five exons. The human TSHβ

gene consists of three exons. The coding regions are located in
exons 4 and 5, and exons 2 and 3, in mouse and human TSHβ,
respectively. There is considerable homology at both the gene
and protein levels between human and mouse TSHβ (2). In both
species, TSHβ consists of 138 amino acids, 118 of which comprise
the native TSHβ protein with a 20 amino acid signal peptide. Evi-
dence that TSH is produced by cells of the immune system dates
back over three decades (3–5). Since then, TSH has been shown to
have extensive involvement in immune regulation, development,
and effector function activity in primary and secondary lym-
phoid cell populations, as well as in mucosal sites in the intestine.

A number of reviews have covered these topics (6–8). Addition-
ally, an osteoprotective role for TSH has recently been reported
in bone formation involving osteoblast generation and osteoclast
destruction (9). The focus of the present review will be on the
characterization and function of a recently described TSHβ splice
variant (TSHβv) (10).

IDENTIFICATION AND CHARACTERIZATION OF THE TSHβv
Although TSH can be produced by both myeloid and lymphoid
cells, myeloid cells in the bone marrow (BM) and peripheral
leukocytes generated from those cells are the primary source of
immune system TSH (6, 11–13). Intracellular staining for TSHβ

and quantification of TSH synthesis by enzyme-linked assays
revealed a CD11b+ cell population to be the predominant BM
TSHβ-producing cell (14).

An early clue that immune system TSH may have a func-
tional role in regulating metabolism came from in vivo studies
in which mice expressing a transgenic T cell receptor for hen–
egg lysozyme had transient suppression of circulating T3 and T4,
and that there was an influx of CD11c+ cells into the thyroid
following antigen exposure (15). Moreover, hypophysectomized
(HPX) mice challenged with alloantigen had a significant increase
in serum T4 levels (15). Because HPX mice are unable to make
pituitary-derived TSH, the signal responsible for elevated levels of
T4 appeared to have been derived from an extrapituitary source.

Trafficking studies in which BM cells from enhanced green flu-
orescent protein transgenic mice were used to reconstitute lethally
irradiated syngeneic host animals demonstrated the presence of
intrathyroidal leukocytes consisting of CD11b+ cells that did not
express CD3, CD4, CD8α, CD19, CD40, Ly-6G, or F4/80, although
a small proportion were CD11c+ (14). Trafficking to the thyroid
occurred as early as 1 week post-BM reconstitution and continued
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until at least 20 weeks post-reconstitution (14). Direct evidence
that intrathyroidal CD11b+ cells produced TSH was established
by two-color staining of fresh-frozen thyroid tissue sections using
anti-CD11b and anti-TSHβ antibodies (14).

While conducting a series of studies to assess the conditions
under which TSH is produced in the thyroid, we observed that
there was no amplification of the TSHβ gene in BM cells or

FIGURE 1 | PCR analysis of nativeTSHβ andTSHβv gene expression in
mouse pituitary, bone marrow, and thyroid tissues. Note the expression
of the native form of TSHβ in the pituitary but not the bone marrow and
thyroid, and the expression of the TSHβ in all three tissues. Presented data
were derived from Ref. (10).

thyroid tissues using primers targeted to the full-length mouse
TSHβ transcript (all of exons 4 and 5) (10). Using a primer set
that targeted the 3′ end of intron 4 and a downstream region just
after the TAA stop codon of exon 5, conventional and qRT-PCR
analyses were done from pituitary, thyroid, and BM tissues. A PCR
product was detectable in the pituitary but not the BM or thyroid
using primers for the full-length native transcript, whereas a PCR
product was detected in the pituitary, the BM, and the thyroid
using primers that targeted exon 5 (Figure 1). This suggested that
alternative splicing of the TSHβ gene had occurred at or near the
beginning of mouse exon 5, thus excluding exon 4 from the gene
product. DNA sequencing of the PCR product revealed homol-
ogy to exon 5 of the mouse TSHβ gene with a portion of intron
4 that was retained and contiguous with exon 5 (10). This con-
sisted of 27 nucleotides from intron 4 beginning with an ATG
start codon and was in-frame with exon 5 of mouse TSHβ. This
coded for nine amino acids (MLRSLFFPQ) and a truncated pro-
tein comprising 71% of the native TSHβ molecule (10). Similar
findings were obtained using human tissues (16). These are shown
in Figure 2. However, the possibility also must be considered that
transcription of TSHβv is due not to alternative splicing but to
initiation of transcription from within introns 4 and 2 of mouse
and human TSHβ, respectively.

Studies using the mouse TαT1 thyrotropic cell line and the
mouse AM macrophage cell line demonstrated high levels of native
TSHβ and minimal TSHβv in TαT1 cells, and low levels of native
TSHβ and high levels of TSHβv in AM cells (Figure 3). Mouse BM-
derived myeloid cells have been shown to preferentially express the
TSHβv in CD11b+ M2 macrophages relative to M1 macrophages
(17). Expression of the TSHβv is low in monocytes, neutrophils,
and lymphocytes (17).

FIGURE 2 | (A) Genetic organization of the mouse and human TSHβ

gene. (B) The native TSHβ polypeptide in mice and humans is coded for
by exons 4 and 5, and exons 2 and 3, respectively (blue boxes). (C) The
TSHβv polypeptide is coded for by exon 5 in mice and exon 3 in

humans. The 27 nucleotide 3′ end of intron 4 in mouse and intron 2 in
human TSHβv codes for a nine amino acid signal peptide (shown in red)
beginning with a methionine translational start site. Gray boxes
represent stop codons.
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FIGURE 3 | Gene expression of nativeTSHβ andTSHβv in mouseTαT1
thyrotropic cells and the mouse AM macrophage cell line, showing
lowTSHβv gene expression inTαT1 cells and high expression in
macrophages.

In mice, the TSHβv transcript is present in tissues through-
out the body, whereas the full-length native TSHβ transcript is
largely restricted to the pituitary (Figure 4). The wide distribu-
tion of the TSHβv isoform likely does not reflect expression by
the somatic tissues themselves, but may represent the presence of
leukocytes, particularly CD11b+ cells within the circulation, that
are embedded in those tissues, although this has yet to be formally
demonstrated. The presence of trace amounts of native TSHβ gene
expression in the lung is interesting but unclear at this time.

Evidence that the TSHβv protein is actively secreted comes
from western blot studies using supernatants from CHO cells
transfected with the mouse TSHβv gene (10), from western blots
of serum from healthy persons (18), and from mass spectrome-
try analysis of peptides from BM cell culture supernatants (17).
Co-immunoprecipitation experiments using recombinant human
TSHα and TSHβv revealed dimerization of the TSHβv with TSHα

(18), a condition that would be needed for optimal binding of the
TSHβv to the TSHR.

ROLE OF THE TSHβv IN HEALTH AND DISEASE
TSHβv DURING ANTIGENIC CHALLENGE AND VIRUS INFECTION
That the TSHβv retains functional activity in terms of intracellu-
lar signaling has been established from in vitro studies of cAMP
responses in mouse AM cells and rat FRTL thyroid follicular cells

FIGURE 4 |Tissue distribution of nativeTSHβ andTSHβv in 13 mouse
tissues. Note the restricted expression of native TSHβ primarily in the
pituitary, and the wide distribution of TSHβv throughout the other tissues.

(10), and in Chinese hamster ovary cells transfected with the
TSHR cultured in the presence of BM macrophages as a source
of TSHβv (17).

To determine if antigenic challenge, in this case virus infec-
tion, influences the expression levels of the TSHβv in the thyroid,
C57BL/6 mice were infected intraperitoneally with serotype 3
reovirus. Thyroid tissues were isolated 48 h later. Virus infection
had no effect on native TSHβ gene expression in the thyroid rel-
ative that of non-infected mice; however, there was a significant
increase in TSHβv transcript levels in the thyroid of virus-infected
mice (10) (Figure 5), indicating that the host response to infection
was accompanied by a selective increase in intrathyroidal syn-
thesis of the TSHβv. These findings, coupled with studies using
alloantigen-primed mice (15), suggest that elevated levels of the
TSHβv are produced in the thyroid during foreign antigen expo-
sure. The effect of this may be to suppress circulating thyroid
hormone production and lower the host metabolic activity during
periods of infection by blocking native TSHβ binding. A model for
this has been proposed (19). Interestingly, TSHβ synthesis also has
been shown to be increased in the small intestine of mice follow-
ing oral infection with reovirus (20) or rotavirus (21), although
the form of TSHβ produced locally was not determined in those
studies.

TSHβv IN CHRONIC INFLAMMATION
Besides the involvement of immune system TSH during infec-
tion, there are a large number of human conditions with links to
thyroid dysregulation that have yet to be fully understood, many
of which have notable inflammatory components. These include
Graves’ disease and Hashimoto’s thyroiditis (22), Graves’ ophthal-
mopathy (23, 24), Pendred’s syndrome (25), Lyme disease (26),
inflammatory bowel disease (27), rheumatoid arthritis (28), sys-
temic lupus erythematosus (29, 30), psoriasis (31), asthma (32),
sepsis (33, 34), and hypothyroidism that may accompany type I
interferon therapy (35–37).

Although much still needs to be done to establish a role for
TSHβv in disease, some evidence for this already exists. In a study
of patients with Hashimoto’s thyroiditis (HT), transcript levels
of the TSHβv were higher in peripheral blood leukocytes (PBL)
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FIGURE 5 | Systemic reovirus infection induces gene expression of
TSHβv but not nativeTSHβ in thyroid tissues. Mice were infected
intraperitoneally with 107.5 plaque-forming units of reovirus serotype 3
Dearing strain. Tissues were assayed for gene expression 48 h
post-infection. Presented data were derived from Ref. (10).

of HT patients compared to normal controls (18). Prednisone
treatment of HT patients significantly reduced TSHβv transcript
levels in patients having a short duration of disease (≤9 months)
compared to patients with a long duration (≥18 months) or to
controls. Consistent with that, TSHβv transcript levels in PBL of
HT patients were reduced in a dose-dependent manner in vitro
upon exposure to dexamethasone (18). These findings point to a
potential involvement of the TSHβv in the pathogenesis of HT.

TSHβv AS A REGULATOR OF BONE MORPHOGENESIS
Recent studies have identified an osteoprotective role for
TSH involving osteoclast growth and osteoclast inhibition (9).
Although early studies linking bone loss and thyroid function
were largely regarded to be due to elevated thyroid hormone lev-
els, studies using Tshr−/− mice that were incapable of delivering a
TSHR signal but were made hyperthyroid by T4 supplementation
revealed a pattern of bone loss similar to that of hyperthyroid wild-
type mice, thus implicating a failure of TSH signaling, not excessive
thyroid hormone synthesis, as the cause of poor bone remodeling
(38). Those findings now have been linked to the TSHβv as shown
by the proximity of TSHβv-producing macrophages in mouse
vertebral bone, by the capacity of macrophage-derived TSHβv to
induce osteoblast formation, and suppression in the presence of
anti-TSH antibody (17).

POTENTIAL CLINICAL INVOLVEMENT OF THE TSHβv IN
HEALTH AND DISEASE
The TSHβv – the first functional alternatively spliced form of
TSHβ to be identified in mice and humans (10, 16, 39) – could
have a multitude of here-to-fore unknown biological activities,

which may be beneficial or detrimental to the host depending
upon the clinical setting. Already, three potential candidates for
this have been identified.

First, the TSHβv may contribute to the process by which thyroid
hormone synthesis is regulated. Competitive binding of TSHβv
to thyroid TSHR may block native TSHβ binding. Whether this
occurs, or whether the TSHβv can preferentially displace native
TSHβ or vice-verse, has yet to be demonstrated. Similarly, it will
be of interest to determine the extent to which TSHβv and native
TSHβ bind to discrete regions of the TSHR, and whether they
differentially dimerize to the TSHα moiety. Competitive bind-
ing studies may help to elucidate this. Additionally, the fact that
the TSHR is widely expressed in the BM and throughout the
peripheral immune system (13, 21, 40–42), raises questions of
whether those cells operate in some manner to regulate the amount
of immune system-derived TSHβv that is available. Preliminary
studies in our laboratory using recombinant mouse TSHβv sug-
gest this leads to lower circulating T4 levels (Montufar-Solis
and Klein, unpublished). Whether that effect is beneficial to the
host remains to be determined; however, during acute infection,
immune system-derived TSHβv may function as an alternative
regulator of metabolism.

Second, continually dysregulated synthesis of TSHβv from cells
of the immune system, possibly as a consequence of chronic
inflammation due to the excessive accumulation of CD11b+ cells,
could lead to HT. The TSHβv protein, which was shown to be
present in sera of normal persons (18), may increase in chronic
inflammatory conditions, resulting in a non-homeostatic tilt
favoring the TSHβv isoform over native TSHβ. This was implied
by the finding of increased gene expression levels of TSHβv in PBL
of HT patients (18). Interestingly, hypothyroidism is an occasional
complication of patients undergoing type I interferon therapy (35–
37). Whether that reflects an imbalance between native TSHβ and
TSHβv caused by an inflammatory response induced by interferon
is unknown. Further studies will need to be done to address this.

Third, the beneficial effects of TSHβv produced by bone-
associated M2 macrophages could be an on-going process
throughout life linked to bone remodeling (17). This would pro-
vide a local source of TSH that could be modulated independently
of pituitary TSH. Whether the numbers, or the production of the
TSHβv, of BM-derived macrophages is changed during aging will
be of interest to determine.

Clearly, a key feature of the TSHβv isoform is its immune sys-
tem source. This provides a new and exciting insight into how
two of the body’s major physiological systems, the immune sys-
tem and the endocrine system, come together in a collaborative
way in the maintenance of health, and in the potential for disease
when disruption of that axis occurs.
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